многолистная функция

многолистная функция
багатоли́ста фу́нкція

Русско-украинский политехнический словарь. 2013.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "многолистная функция" в других словарях:

  • МНОГОЛИСТНАЯ ФУНКЦИЯ — понятие, естественным образом обобщающее понятие однолистной функции. Функция , регулярная или мероморфная в области Dкомплексной плоскости z, наз. р листной в D(р=1, 2, ...), если она принимает в этой области каждое свое значение не более рраз,… …   Математическая энциклопедия

  • ОДНОЛИСТНАЯ ФУНКЦИЯ — функция f, регулярная или мероморфная в области Врасширенной комплексной плоскости п такая, что для всяких zl , выполняется соотношение то есть f отображает В в взаимно однозначно. При этом обратная функция также однолистна. Обобщением О. ф.… …   Математическая энциклопедия

  • МНОГОЛИСТНАЯ ОБЛАСТЬ — область S римановой поверхности R, рассматриваемой как накрывающая поверхность над плоскостью комплексного переменного , такая, что над каждой точкой ее проекции расположены не менее двух точек S; ветвления точка R порядка считается при этом за… …   Математическая энциклопедия

  • ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО ТЕОРИЯ — в широком смысле слова теория функций, областью определения к рых является нек рое множество точек z комплексной плоскости (функции одного комплексного переменного) или множество точек z=(z1,. . . ,zn) комплексного евклидова пространства п>1… …   Математическая энциклопедия

  • ПЛОЩАДЕЙ ПРИНЦИП — площадь дополнения к образу области при ее отображении регулярной в ней функцией неотрицательна. Впервые П. п. использовал в 1914 Т. Гронуолл [1], к рый доказал этим путем т. н. внешнюю теорему площадей для функций класса 2 функций регулярных и… …   Математическая энциклопедия

  • ВРАЩЕНИЯ ТЕОРЕМЫ — теоремы, характеризующие изменение аргумента при конформном отображении. В. т. в классе Sфункций регулярных и однолистных в круге , дает точные оценки аргумента производной для функций этого класса: Здесь рассматривается та ветвь к рая равна нулю …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»